www.functionalproducts.com

FUNCTIONAL PRODUCTS INC. Innovative Chemistry for Lubricants

Welcoming Gavin Duckworth Vice President of National Accounts for Functional Products Presenting

"Using Unique Polymer Chemistry to Enhance Automotive and Industrial Formulations".

November 6, 2020

Functional Products Inc.

- Founded in 1985
- Focus on customer driven solutions
- Full service technical support lab
- ISO 9001 with Design
- Let us do the search and you do the research

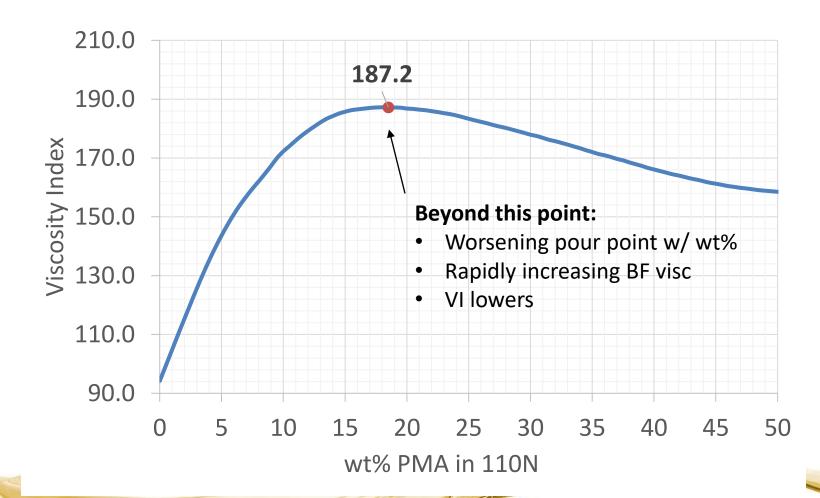
- Full Service Additive supplier
- Tackifier Industry leader
- Bio-Based experts
- Provides polymer chemistry
- Baseoil Chemistry

FUNCTIONAL PRODUCTS

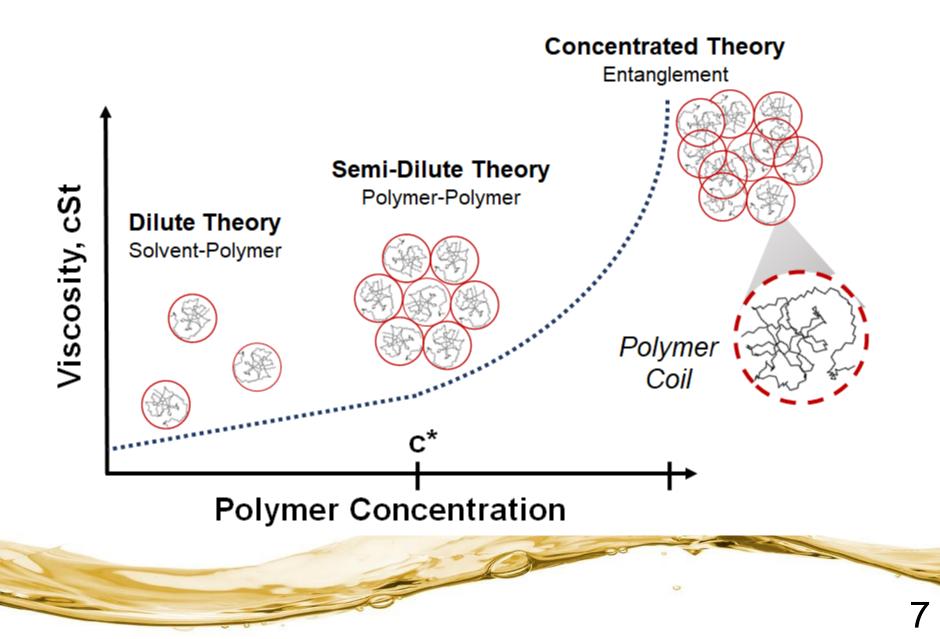
Formulator's Dilemma

Motivation

- New high performance additives and fluids coming out every year
 - Typically become available to most formulators
 - But if everyone offers the same formulas at the same prices it's hard to differentiate!
- We typically find the easiest, most direct path to formulating leaves <u>10-20%</u> cost that can be optimized out


VI Blending Study

- Many options for VI improver chemistry
- Often diminishing returns on using increasing amounts of one VI improver
 - VI can plateau beyond a certain wt%
 - Pour point can improve and then worsen


- What if we could use the high VI improvement from a PMA with the thickening efficiency of OCP?
- NLGI 2018 Development Author Award
- "Viscometric and Low Temperature Behavior of Lubricants with Blended VI Improvers"

Key Observation

- Inflection point in VI when adding high amounts of VM to oil
 - Why?

Key Theory Realized

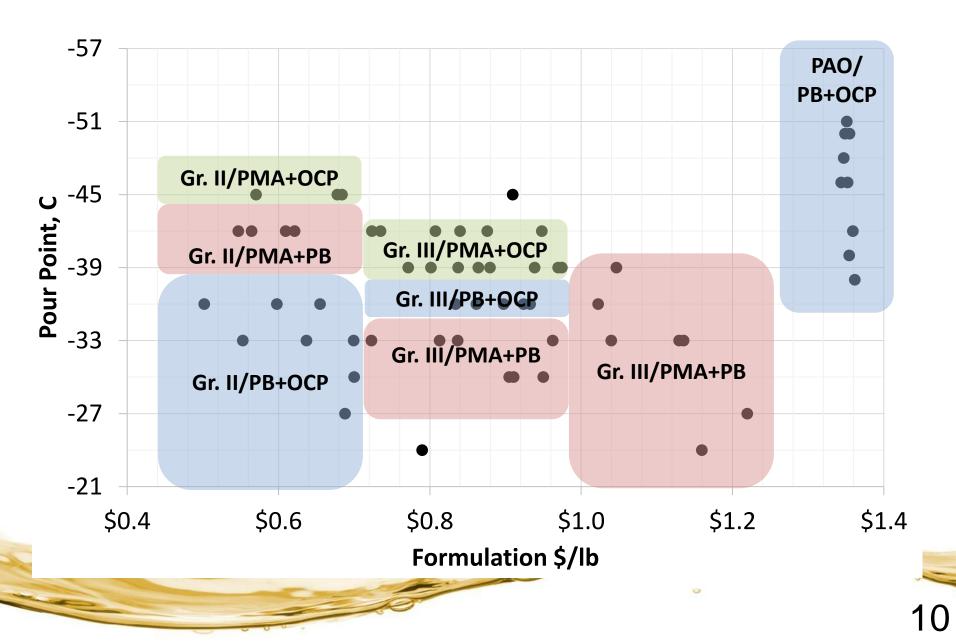
Economics Followup

• Initial paper focused on performance like ISO VG vs. VI vs. p.p.

- What about the cost of achieving those different parameters?
 - Are different VM combos better for economics too?

Blending Setup

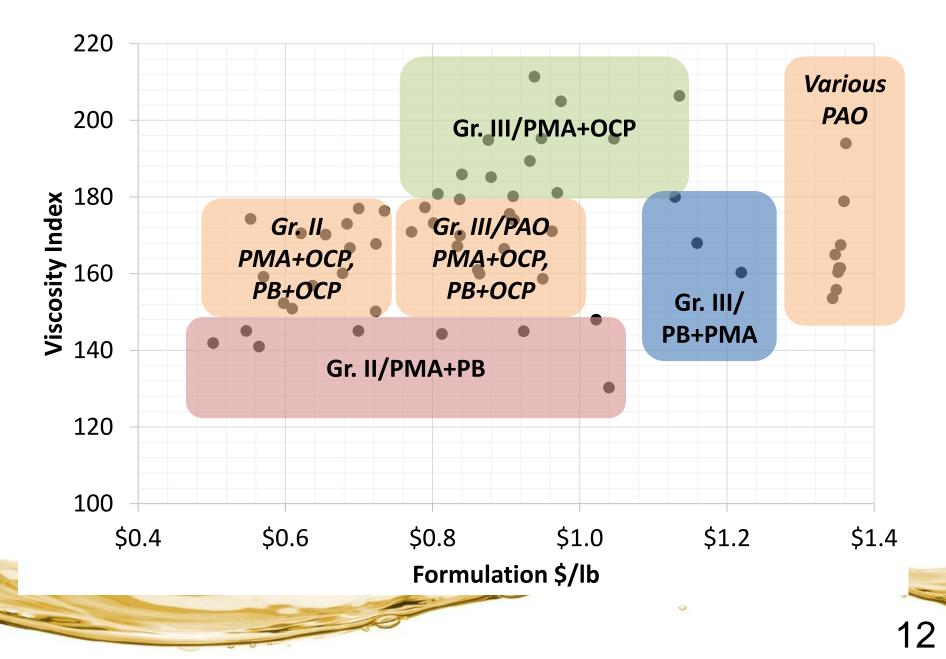
- Project Setup:
- Two different viscosity modifiers combined at varying wt% in three different oils to evaluate for synergies


Viscosity Modifier A							
ier B		5wt%	10wt%	20wt%			
Viscosity Modifier	5wt%	#1	#2	#3			
	10wt%	#4	#5	#6			
	20wt%	#7	#8	#9			

x every permutation of two viscosity modifiers b/w PB, OCP, PMA

x 6 cSt Group II, 4 cSt Gr. III, or PAO6

- $9 \times 3 \times 3 = 81$ formulations
 - Measured viscosity, VI, and pour point
 - Determined trends in VI and pour point behavior with VII


FUNCTIONAL PRODUCTS INC. Innovative Chemistry for Lubricants VM Blending vs. PP and Cost

Summary - PP and Cost

- Key findings:
 - PMA + OCP combination offers best pour point versus cost trend
 - Gr. II data shows better performance than Gr. III
 - Likely due to optimization of the PPD both used a flat 0.2wt%
 - PAO offers lowest pour point but 130% and 50% more expensive than Gr. II and III
 - Worst cost vs. pour point was Group III with PMA + PB

FUNCTIONAL PRODUCTS INC. VM Blending vs. VI and Cost

Summary – VI and Cost

- Key findings:
 - Stand-out performance with Group III using PMA+OCP combo
 - VI 180 220 are feasible
 - VI from PB+OCP or PB+PMA fall in Gr. II / III / PAO are mostly similar
 - Worst performer is Group III with PB + PMA
 - Lower solvency Group III with high amounts of added PB will begin to affect clarity

OCP as mPAO Alternatives

- Innovative Chemistry for Lubricants
- mPAO excellent shear and oxidative stabilities
 - mPAO priced ~\$1/lb higher than low visc PAO
 - Not every application requires such shear stability
 - Save the mPAO for industrial gear / HF
- 22 and 50 SSI olefin viscosity modifiers in low visc PAO
 - 10% lower formulated cost vs. mPAO at ISO >68 in PAO6
 - High SSI VM provides extra VI, tack, stay-in-place
 - Removal of mPAO improves solvency for additives and polymers
 - Benefit to light duty HF, way oils, chain oils, spindle, grease

OCP/PAO vs. mPAO

• Liquid "PAO VM" using 50 SSI metallocene OCP in light PAO

PAO100 in PAO6 **OCP/PAO VM in PAO6** Viscosity Viscosity wt% wt% Cost PAO100 Index Index Reduction **ISO VG** VM ISO 46 13% 154 5% 176 4.4% ISO 68 25% 158 11% 189 6.5% ISO 100 162 16% 193 10.7% 40% ISO 150 50% 167 22% 202 11.0% ISO 220 60% 171 27% 209 11.6% ISO 320 70% 175 32% 216 12.5% ISO 460 180 37% 224 80% 13.3%

Economics in PAO6 for PAO 100 vs. OCP/PAO VM

• Light duty HF, chain oils, textile, way oils, greases

Innovative Chemistry for Lubricants

PMA vs. mPAO

- Some applications require high shear stability, PMA can help
- Higher cost per pound versus mPAO but...
 - Above 20-30% viscosity rapidly increases to outmatch mPAO \$/treat
 - Very low SSI will still shear in grade or <15% by KRL
- PMA (15 SSI by KRL) as a high viscosity 'base fluid'

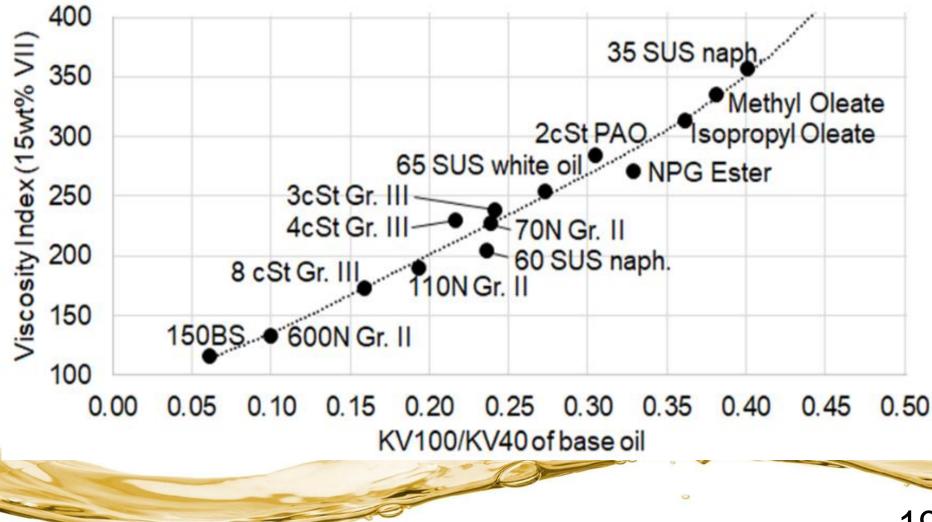
	wt%	wt%	Cost
ISO VG	mPAO150	PMA	Reduction
100	42%	31%	0%
150	51%	36%	4%
220	60%	40%	8%
320	68%	44%	11%
460	75%	47%	13%
680	83%	50%	15%
1000	90%	53%	17%

High Viscosity Economics in PAO4

High VI and Cost

- High VI 140+ market moving more towards 180+ and later to 220+
 - How to achieve these VIs?
 - New base oils? Special VI improvers?

Innovative Chemistry for Lubricants


<u>Very High VI</u>

- 15wt% of low SSI PMA viscosity modifier in various fluids
 - We get various viscosity indexes
 - Why do some give very high or very low VI? KV? VI? Synthetic?

Base Fluid	Viscosity Index w/ 15% PMA (35 SSI)	T
D-Limonene	572	
35 SUS naph. oil	357	
Methyl oleate	335	
Isopropyl oleate	313	
PAO2	284	
C9 NPG Ester	271	
65 SUS white oil	254	
3 cSt Gr. III	238	
4 cSt Gr. III	230	
70N Gr. II	227	
60 SUS naph. oil	204	5
110N Gr. II	190	6
8 cSt. Gr. III	173	-
600N Gr. II	133	
150BS	116	

KV Ratio vs. VI

• VI with VI improver can be predicted based on KV100 / KV40

Some Applications

- Shock absorber (VI 200-400)
- 5605-spec fluids (VI 350+)
- Very high VI hydraulics and gear (VI 220)

- All possible with conventional base oils and VMs chosen carefully
 - Low KV white oils, naphthenic produce higher VIs than Gr. III and PAO
- Lower base oil KV typically improves VI
 - Blending in higher KV base oils quickly drops formulated VI
 - PB as 'base fluid' increases KV of light oils with less effect to VI

Economy HFs

- 25 SSI pellet with just 150SN provides lower cost but higher VI than 50 SSI liquid
 - Using more VI improver actually saved \$/Ib

		Group I HL/HLP HF			Group I HL/HLP HF				
		ISO 32	ISO 46	ISO 68	ISO 100	ISO 32	ISO 46	ISO 68	ISO 100
150SN	Base Oil	97.3	65	29.5	0	97.5	97.15	96.6	95.8
500SN	Base Oil		32	68.2	97.1				
	25 SSI pellet VII					0.1	0.45	1	1.6
	50 SSI liquid VII	0.3	0.5		0.3				
	Ad Package	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
	Gr. I PPD	0.2	0.3	0.4	0.5	0.2	0.2	0.2	0.2
	VI	101	100	100	102	106	114	126	160
	\$/lb typical	\$0.603	\$0.637	•	\$0.699 Cost Savings	•	•	\$0.617 7.6%	\$0.626 10.4%
A C				2.		•	~		

Group III Automotive Gear

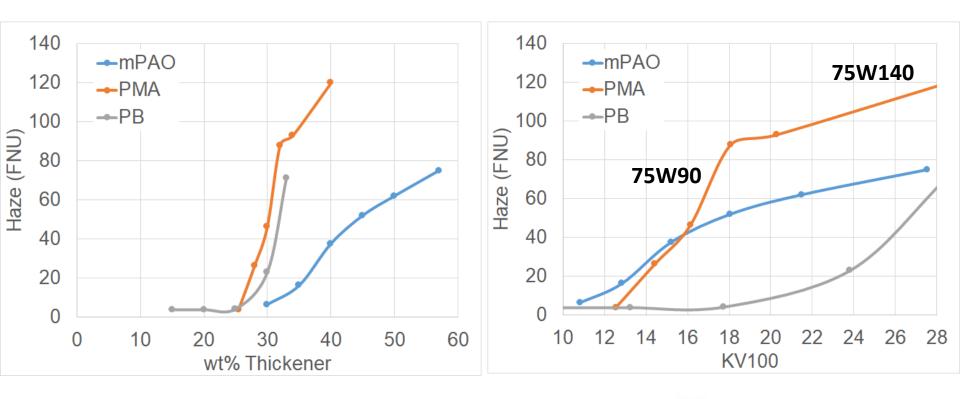
- New Baseoil Technologies on the Market (ie. polyolefin)
- Ability to use GIII in 75W140

	75W-90 Gr. III	75W-140 Gr. III
4 cSt Group III	86.5	81.25
Polyolefin Basestock	9.0	14.25
Pour Point Depressant	0.5	0.5
GL-5 LS Package	4.0	4.0
KV40, cSt	64.0	117.0
KV100, cSt	14.6	26.0
Viscosity Index	240	258
BF @ -40C (D2983)	20,250 cP	30,500 cP
KV100 after KRL	13.7, In Grade	24.05, In Grade
RPVOT (D2722) *	94 minutes	86 minutes

What is the Haze?

- Haze occurs after blending in additive package
 - The "package" isn't hazing likely only a few components

- To identify 'bad actors', different components added in isolation to a low solvency 75W140 trial formula (PB/PMA/PAO)
 - Freeze/thaw again, -54C



Testing Haze

- Formulate polymers in PAO4 with GL-5 ad pak (10% treat)
 Freeze/thaw at -20C
- Milwaukee Mi 415 turbidity meter (FNU units)

Low Haze 75W's Without Ester

Haze >20 FNU is readily apparent and noticeable

www.functionalproducts.com

Freeze/Thaw on Ad Pak Components

Trial	Chemistry	Treat	Role	FNU Haze	Visual
А	-control-	N/A	<control></control>	0	Clear
В	Alkyl triazole	0.1%	Corrosion inhibitor	10.6	Clear
С	Mb dithiocarbamate	3.0%	Friction modifier	2.92	Clear
D	Aromatic amine	1.0%	Antioxidant	1.43	Haze
Е	Ashless dithiocarbamate	1.5%	Ashless friction modifier	1.62	Clear
F	Amine phosphate	1.0%	Corrosion inhibitor	4.55	Clear
G	Overbased calcium sulfonate	1.0%	Detergent	15.7	Haze
Н	PIBSI	1.0%	Dispersant	0.8	Haze
I	Dialkyl pentasulfide	1.0%	Active sulfur	0	Clear
J	Sulfurized ester	1.0%	Inactive sulfur	1.15	Clear*
К	PAG defoamer	0.2%	PEG Defoam	2.7	Haze
L	Acrylate defoamer	0.2%	Acryl Defoam	1.3	Clear

- Discrepancy between measured haze vs. visual inspection
- Worst haze: from D > G, H > K; delayed separation with J after one month.

Summary on Haze

- Haze in full synthetic automotive gear oils
 - Inherently low solubility base fluids
 - Extra high treat of shear stable polymer
 - Less of an already poor solvent available
- Bad actors
 - Aromatic amine anti-oxidant
 - Calcium sulfonate and PIBSI
 - PAG defoamer

www.functionalproducts.com

Summary

- 2018 study
 - Group II/III blends with OCP and PMA offer cost competitive VI and pour points against PAO
 - Don't overtreat VM (avoid 'critical concentration') to keep good VI and low temperature fluidity
- mPAO alternatives for thickening low viscosity PAO with OCP where the shear stability doesn't matter
- Fundamentals of high VI formulating allow greater flexibility and cheaper oil selection rather than Group III or other high VI oils

- Gavin Duckworth, gduckworth@functionalproducts.com
- 214-212-6237

Thank You! Please join us next month on <u>December 11, 2020.</u>

